3.1.68 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\) [68]

Optimal. Leaf size=117 \[ \frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d/cos(d*x+c)^(1/2)
/(b*sec(d*x+c))^(1/2)+2/3*(A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c)
,2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b^2/d+2/3*A*tan(d*x+c)/d/(b*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4132, 3856, 2719, 4130, 2720} \begin {gather*} \frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*(A + 3*C)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*b^2*d) + (2*A*Tan[c + d*x])/(3*d*(b*Sec[c + d*x])^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=\frac {B \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx}{b}+\int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\\ &=\frac {2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac {(A+3 C) \int \sqrt {b \sec (c+d x)} \, dx}{3 b^2}+\frac {B \int \sqrt {\cos (c+d x)} \, dx}{b \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac {\left ((A+3 C) \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^2}\\ &=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.08, size = 154, normalized size = 1.32 \begin {gather*} \frac {e^{-i d x} \sec ^2(c+d x) (\cos (d x)+i \sin (d x)) \left (6 i B \cos (c+d x)+2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-2 i B e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+A \sin (2 (c+d x))\right )}{3 d (b \sec (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(Sec[c + d*x]^2*(Cos[d*x] + I*Sin[d*x])*((6*I)*B*Cos[c + d*x] + 2*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c +
d*x)/2, 2] - (2*I)*B*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*
(c + d*x))] + A*Sin[2*(c + d*x)]))/(3*d*E^(I*d*x)*(b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 25.30, size = 602, normalized size = 5.15

method result size
default \(\frac {\frac {2 i A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )}{3}-2 i B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 i B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 i C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+\frac {2 i A \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{3}-2 i B \sin \left (d x +c \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 i B \sin \left (d x +c \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 i C \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\frac {2 A \left (\cos ^{3}\left (d x +c \right )\right )}{3}-2 B \left (\cos ^{2}\left (d x +c \right )\right )+\frac {2 A \cos \left (d x +c \right )}{3}+2 B \cos \left (d x +c \right )}{d \cos \left (d x +c \right )^{2} \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )}\) \(602\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(I*A*sin(d*x+c)*cos(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)-3*I*B*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d
*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+3*I*B*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*El
lipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+3*I*C*sin(d*x+c)*cos(d*x+c)*EllipticF(I*(-1+cos(
d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+I*A*sin(d*x+c)*EllipticF(I*(-
1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-3*I*B*sin(d*x+c)*Ellipt
icE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*I*B*sin(d*x+c
)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*I*C*s
in(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
-A*cos(d*x+c)^3-3*B*cos(d*x+c)^2+A*cos(d*x+c)+3*B*cos(d*x+c))/cos(d*x+c)^2/(b/cos(d*x+c))^(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.41, size = 160, normalized size = 1.37 \begin {gather*} \frac {2 \, A \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 3 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A + 3 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, b^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(2*A*sqrt(b/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + sqrt(2)*(-I*A - 3*I*C)*sqrt(b)*weierstrassPInverse(-
4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*A + 3*I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) -
 I*sin(d*x + c)) + 3*I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*si
n(d*x + c))) - 3*I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*
x + c))))/(b^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(3/2),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________